An Oracle White Paper
April 2012

Deploying Oracle Data Guard with Oracle Database Appliance
Introduction

Oracle Database Appliance is a pre-built, pre-tuned, and ready-to-use clustered database system that includes servers, storage, networking, and software. Oracle has optimized it to make it easy to deploy, operate, and manage. It is a complete and ideal database platform for small and medium sized implementations and incorporates robust, time-tested Oracle technologies, including the world leading Oracle Database, Oracle Real Application Clusters (RAC), Oracle Clusterware, and Oracle Automatic Storage Management. By integrating hardware and software, Oracle Database Appliance eliminates the complexities inherent in non-integrated, manually assembled solutions, reducing deployment time from weeks or months to just a few hours, while preventing configuration and setup errors that often result in sub-optimal, hard-to-manage database environments.

Why do I need a standby database environment?

While the Oracle Database Appliance is a highly available system in itself, a standby database environment can provide protection against planned and unplanned downtime as well as against data loss in case the primary database environment becomes unavailable. With the use of proper technology, it is also possible keep the standby database synchronized with the primary database, thereby providing almost transparent continued database operations even in the face of problems ranging from user errors to system failures, to disasters. A standby database has therefore always been a key to high availability and protection for any important production system.

Oracle recommends using a separate, dedicated Oracle Database Appliance system to host the standby database for one or more mission critical production databases running on the primary Oracle Database Appliance system.

Figure 1 Oracle Data Guard Setup Using Two Oracle Database Appliances
Why Oracle Data Guard?

Oracle Data Guard is the recommended disaster recovery solution to protect databases residing on Oracle Database Appliance against database or cluster failures, corruptions, disasters, and user errors resulting in “sick” or down database. The tight integration of Oracle Data Guard with Oracle Database provides a unique level of data protection that is impossible to achieve with any other solution. Oracle Data Guard is available to customers as part of Oracle Database Enterprise Edition. It is easy to deploy and provides the management, monitoring, and automation software to create and maintain one or more synchronized copies (standby databases). Oracle Data Guard helps maintain database availability easily when the production database system becomes unavailable due to any reason and also helps minimize downtime during planned maintenance activities by shifting the application workload to the standby environment.

Multiple Benefits of Using Oracle Data Guard

With the use of Oracle Data Guard, the standby database environment does not need to be idle, dark capacity. The standby database can instead actively serve many useful purposes. There are several benefits of implementing the standby database using Oracle Data Guard. These numerous benefits greatly increase the overall return on effort and investment.

- **Migration to Oracle Database Appliance** – Oracle Data Guard enables an easy approach for migration to Oracle Database Appliance. You can simply create a Physical Standby database on a Oracle Database Appliance and switchover from the old environment to the new environment. This includes migration across certain platforms as well. For example, to migrate your databases currently running on Windows to Oracle Database Appliance, a Linux platform, you may simply setup Oracle Data Guard between the two environments and switchover. This approach to platform migration provides the flexibility to switchback, if for any reason you choose to do so after testing. Refer to My Oracle Support (MOS) note 413484.1, Data Guard Support for Heterogeneous Primary and Physical Standbys in Same Data Guard Configuration, for more information about platform migration using Data Guard.

Oracle Data Guard also allows you to migrate across database versions using a transient logical standby database.

- **Disaster Recovery** – Oracle Data Guard physical standby database provides an ideal solution for disaster protection. Disaster scenarios vary from burst water or steam pipes, fire, hurricanes, vandalism, to earthquakes, floods, and terrorism. Oracle Data Guard maintains a block-for-block copy of the production database. In the event the primary environment becomes unavailable due to
any reason, the standby environment can be quickly activated to maintain continued database availability.

- **High Availability** – The standby database can also be useful in maintaining availability during planned and unplanned outages, such as configuration changes, hardware replacements, etc. as well as during data corruptions, failures resulting from human errors, and other unexpected system failures.

- **Database Rolling Upgrades** – The standby database minimizes downtime when certain patches are applied and changes are made to the primary Oracle Database Appliance. Patches or other maintenance is applied first at the standby database, validated, and then production is switched to the standby database. The only downtime for the databases is the short period of time required to change roles between primary and standby. Please refer to My Oracle Support (MOS) note 1265700.1, Oracle Patch Assurance - Data Guard Standby-First Patch Apply, for more information.

- **Offloading Workload and Activities** – The standby environment does not have to be idle. It can be actively used to maximize the overall return on investment. With a physical standby database in place, several key activities can be offloaded to the standby environment.
 - **Read-Only Queries** – Using Oracle Active Data Guard option, the standby database can be open for query workload while being in the standby mode and accepting updates from the primary database. In many cases, this can help offload a significant part of the production workload to the standby database environment, thereby increasing the overall capacity of the system.
 - **Backups** – Because the physical standby database is a block-for-block copy of the primary database, database backups can be completely offloaded to the standby environment and these backups can be transparently used to restore and recover the primary database in the event of a failure or database loss. Note that if Oracle Active Data Guard is licensed, then fast incremental backups can be run at the standby database, further adding to the appeal of offloading backups to the standby database.
 - **Block Repair** – One of the other benefits of the physical standby database is the ability that it provides to automatically recover from block corruption scenarios. In a primary/standby configuration a corrupt block can be automatically repaired and this operation can be completely transparent. This feature is also a part of the Oracle Active Data Guard option.

- **Snapshot Standby** – The snapshot standby database is an updatable standby database that provides full data protection for the primary database. It continues to receive redo data from the primary but the apply process is halted while the standby database is open for read/write for test. When testing is complete, a single command reverts the standby database back to its original state, discarding the changes made while it was open read-write and applying the accumulated redo logs to make it current with the primary database.
Best Practices for Setup

This section describes some of the important best practices for setting up Oracle Data Guard on Oracle Database Appliance. For a complete list of general Oracle Data Guard best practices, which also apply to the Oracle Database Appliance environment, please refer to Chapter 8, Configuring Oracle Data Guard, of the Oracle® Database High Availability Best Practices Guide 11g Release 2 (11.2).

- **Match the primary and standby database configuration** -- In order to maintain consistent service levels and to use the primary and standby databases transparently, it is important to match the resources, setup, and configuration of the two systems as much as possible. Significant differences between the primary and standby database configuration can result in sub-optimal performance and unpredictable behavior when role transitions occur. Specifically, the following recommendations are made:

 - **Run Primary and Standby Database on Separate Oracle Database Appliances** - It is recommended that the primary and the standby databases run on separate Oracle Database Appliance units. Thus, while the primary database is deployed on one Oracle Database Appliance unit, the standby database should be deployed on a separate Oracle Database Appliance, preferably located in a geographically distant location.

 - **Run Primary and Standby Database in Same Configuration** -- Three different database configurations are supported on Oracle Database Appliance; Oracle RAC database, Oracle RAC One, and Single Instance Enterprise Edition database. The standby database should also be of the same configuration type as the primary database. Thus, if the primary database is configured as a cluster database (Oracle RAC), then the standby database should also be configured as a cluster database (Oracle RAC).

 - **Size Primary and Standby Instances Similar to Each Other** -- The instances on the primary and standby databases should be configured similar to each other in terms of database parameter settings. This helps avoid any unpredictability when the database switch roles.

 - **Pre-configure Primary and Standby Databases for Role Transition** -- The primary and standby databases should be configured so that during role transitions, primary to standby and vice versa, minimal changes are required and necessary. Thus all the database features implemented on the primary database should be configured on the standby database in advance.

- **Configure Flashback Database on both Primary and Standby Databases** -- The Flashback Database feature enables rapid role transitions and reduces the effort required to re-establish database roles after a transition. As a best practice, Flashback Database should be configured on both the primary and the standby database. However, if Flashback is only used for the purposes of
re-instating the Data Guard configuration, it is a best practice to reduce the flashback retention
target from the default of 24 hours to 2 hours.

- **Use Dedicated Network for Standby Traffic** -- Oracle Database Appliance comes pre-built with
 multiple redundant network interfaces. If required, a separate network path can be created for the
 standby traffic to minimize any performance impact on the user and application related workload.
 Note that since Oracle Data Guard needs to transport only the changes made to the primary
database from the primary database to the standby database, it does not impose any unnecessary
requirements on the network than is needed. Therefore, many deployments of Oracle Data Guard
may not require a separate network path to be established for redo log transport between primary
and standby. However, some high volume applications may require a separate network path for redo
log transport. Oracle Database Appliance provides three additional network interfaces on each
server node, including a 10 GbE interface, besides the public 1 GbE interface to configure such a
network. Please refer to MOS note 1451810.1 for additional details on configuring a dedicated
network for disaster recovery purposes on Oracle Database Appliance.

- **Consider Offloading Certain Workloads to Standby** -- Oracle Recovery Manager (RMAN) works
 transparently across the primary and standby databases. The standby database should be leveraged to
offload backups from the primary database environment. The Oracle Active Data Guard
configuration allows for offloading the query workload to the standby environment. Additionally,
the standby database can also enable transparent block corruption repair.

- **Consider Utilizing Oracle Active Data Guard** – Oracle Active Data Guard allows the standby
database to be open for read-only operations while managed recovery (redo transmission and
application on the standby) is concurrently active. This can help distribute the workload from the
primary environment to the standby database, increasing the return on investment in the standby
database. Note that with Oracle Active Data Guard, it is also possible to use fast incremental
backups on the standby database. The fast incremental backups could reduce backup windows from
hours to minutes.

- **Review Oracle Maximum Availability Architecture (MAA) Best practices for Oracle
 Database** -- Depending on the deployment and usage of the Data Guard environment, you may
find the following additional best practices for Oracle Data Guard useful.
 a. Client Failover Best Practices for Data Guard 11g Release 2
 b. Active Data Guard Best Practices
 c. Role Transition Best Practices
 d. Maximum Availability Architecture (MAA) White Paper: Preventing, Detecting, and Repairing
Block Corruption: Oracle Database 11g

The Maximum Availability Architecture (MAA) Best Practices for Oracle Database are available at
Conclusion

Oracle Data Guard when used with Oracle Database Appliance enables you to deploy an effective disaster recovery protection strategy right from the time of initial deployment. The physical standby configuration process outlined in this white paper is simple and can be completed without any downtime incurred on the primary database. Most of the standby creation steps are automated using tools such as Oracle Appliance Manager, Database Configuration Assistance (DBCA), RMAN, and Oracle Data Guard. The automation removes the chances of errors and improper configuration. The creation of the primary and standby databases can be performed at the time of initial primary database deployment.
Appendix A: Example Setup on Oracle Database Appliance

Sample Environment

The following section describes the primary and standby database environment topologies used in the subsequent Data Guard setup example using Oracle Database Appliance.

![Figure 2 Configuration Topology of Oracle RAC on Oracle Database Appliance](image)

TABLE 1. EXAMPLE ORACLE DATABASE NAMING CONVENTIONS

<table>
<thead>
<tr>
<th></th>
<th>PRIMARY ORACLE DATABASE APPLIANCE</th>
<th>STANDBY ORACLE DATABASE APPLIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIANCE NAME</td>
<td>appliance#1</td>
<td>appliance#2</td>
</tr>
<tr>
<td>HOST NAMES</td>
<td>slcac456</td>
<td>slcac457</td>
</tr>
<tr>
<td></td>
<td>slcac458</td>
<td>slcac459</td>
</tr>
<tr>
<td>CLUSTER NAME</td>
<td>CLUSTER1</td>
<td>CLUSTER2</td>
</tr>
<tr>
<td>DATABASE NAME</td>
<td>pdb</td>
<td>sdb</td>
</tr>
<tr>
<td>INSTANCE NAME</td>
<td>pdb1</td>
<td>pdb2</td>
</tr>
<tr>
<td></td>
<td>sdb1</td>
<td>sdb2</td>
</tr>
<tr>
<td>SCAN NAME AND IPS</td>
<td>slcac456-scan (10.1.27.2, 10.1.27.3)</td>
<td>slcac458-scan (10.1.27.4, 10.1.27.5)</td>
</tr>
<tr>
<td>GRID INFRASTRUCTURE</td>
<td>/u01/app/11.2.0.3/grid</td>
<td>/u01/app/11.2.0.3/grid</td>
</tr>
<tr>
<td>SOFTWARE INSTALLATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORACLE DATABASE SOFTWARE INSTALLATION</td>
<td>/u01/app/oracle/product/11.2.0.3/db_home1</td>
<td>/u01/app/oracle/product/11.2.0.3/db_home1</td>
</tr>
<tr>
<td>ARCHIVELOG MODE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FORCE LOGGING MODE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1. **Create Standby Redo Logs**

Oracle recommends that a standby redo log be created on the primary database in a Data Guard configuration so that it is immediately ready to receive redo data following a switch-over to the standby role.

Create Standby Redo Logs (SRL) on the primary database. Each thread of the standby redo log must have at least one more redo log group than the corresponding thread of the online redo log.

```
$> sqlplus / as sysdba
SQL> alter database add standby logfile thread 1 group 7 size 1024M, group 8 size 1024M, group 9 size 1024M, group 10 size 1024M;

SQL> alter database add standby logfile thread 2 group 11 size 1024M, group 12 size 1024M, group 13 size 1024M, group 14 size 1024M;
```

To check the number of online redo logs & their sizes, use the following query.

```
SQL> select group#, thread#, bytes from v$log;
```

Note that the size of the standby redo logs should match the size of the redo logs. The standby redo logs have to be created on the REDO disk group.

To validate the size of each log file and number of log groups in the standby redo log, use the following query.

```
SQL> select group#, thread#, bytes from v$standby_log;
```

2. **Enable archivelog mode on primary database**

Verify that the primary database is running in ARCHIVELOG mode.

```
SQL> archive log list
```

If the primary database is not running in ARCHIVELOG mode then enable ARCHIVELOG mode.

Shutdown both instances on Oracle Database Appliance.

```
$ srvctl stop database -d pdb
SQL> startup mount exclusive;
SQL> alter database archivelog;
SQL> shutdown immediate;
$ srvctl start database -d pdb
```
3. Enable FORCE LOGGING mode.

Verify that FORCE LOGGING is enabled. If FORCE LOGGING is not enabled on the primary database, then enable it.

```sql
SQL> select force_logging from v$database;

SQL> alter database force logging;
```

4. Configure Flashback Database feature

Although using the Flashback Database feature is optional, for faster re-instatement of the old primary database after a failover, it is recommended to use the Flashback Database feature of the Oracle databases. Thus, if you do a failover to the standby, and the old primary can be repaired, you do not have to rebuild it but simply flashback and let Oracle Data Guard resynchronize from that point onwards.

Check if the primary database has Flashback Database enabled and if required then enable it.

```sql
SQL> select flashback_on from v$database;

SQL> alter database flashback on;
```

Note that enabling Flashback Database will require additional space consumption in the Fast Recovery Area (FRA). The space used by flashback logs can be controlled by setting the parameter DB_FLASHBACK_RETENTION_TARGET to a desired value in minutes.

```sql
SQL> alter system set DB_FLASHBACK_RETENTION_TARGET=120 scope=both sid='*';
```

5. Enable Standby File Management

When the primary database adds or drops a datafile, the corresponding action should also be automatically taken on the standby database. This operation can be automated by enabling standby file management.

```sql
SQL> alter system set STANDBY_FILE_MANAGEMENT=AUTO scope=both sid='*';
```

6. Enable Remote Privileged Login

Ensure that each instance of the primary database is configured with remote login password file. Note that the Oracle Database Appliance deploys the databases with this setting. The initialization parameter REMOTE_LOGIN_PASSWORDFILE must be set to exclusive. If this parameter needs to be modified as below, it requires an instance restart for it to take effect.

```sh
$ sqlplus / as sysdba

SQL> show parameter remote_login_passwordfile
```
7. Setup Redo Transport Service

The Oracle Data Guard redo transport mechanism uses Oracle Net connections to send the redo between the databases. Redo transport is enabled by setting the LOG_ARCHIVE_DEST_n parameter. For example, the following setup enables logging shipping and uses the LGWR in asynchronous mode.

```
SQL> alter system set log_archive_dest_2='SERVICE=sdb LGWR ASYNC REGISTER VALID_FOR=(online_logfile,primary_role) REOPEN=60 DB_UNIQUE_NAME=sdb' scope=both sid='*';
```

8. Setup Fetch Archive Log Server

When the database is in standby role and the primary is unable to send any missing log files, then the standby database can use the FAL_SERVER setting to pull those missing log files. The FAL_SERVER parameter is uses the Oracle Net service name.

```
SQL> alter system set FAL_SERVER=sdb scope=both sid='*';
```

```
SQL> alter system set remote_login_passwordfile='exclusive' scope=spfile sid='*';
```
Standby Environment Configuration

This section describes the steps that must be executed on the standby database.

1. **Setup TNS Entries**
 Oracle Net Service Names must be configured to enable redo transportation across the databases. Update tnsnames.ora file for primary database with TNS alias entries for the standby database. Note that in the Oracle Database Appliance, the tnsnames.ora file is located in network/admin directory of the Oracle database home.

 PDB

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP) (HOST = slcac456-scan) (PORT = 1521))

 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = pdb)))

 SDB

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP) (HOST = slcac458-scan) (PORT = 1521))

 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = sdb)))

2. **Create Static Listener Configuration**
 As the grid user, create a static listener service on the standby database for Recovery Manager (RMAN) connection during instantiation. Note that the listener home is in the Grid Infrastructure home (/u01/app/11.2.0.3/grid/network/admin)

 SID_LIST_LISTENER

 (SID_LIST = (SID_DESC = (GLOBAL_DBNAME = sdb))

 (ORACLE_HOME = /u01/app/oracle/product/11.2.0.3/dbhome_1)(SID_NAME = sdb))

3. **Restart Listener**
After changes to the listener are made, it must be restarted.

```
$> srvctl stop listener
$> srvctl start listener
```

4. Create Initial Standby Parameter File

Create a parameter file, pfile, (`$ORACLE_HOME/dbs/initdb.ora`) in the standby database. For example:

```
SQL> CREATE PFILE = 'initdb.ora' FROM SPFILE;
```

5. Create Password File

During the RMAN duplication process, the auxiliary instance needs to be accessed with remote authentication that requires the creation of the password file.

```
$> orapwd
  file=/u01/app/oracle/product/11.2.0.3/dbhome_1/dbs/orapwsdb
  password=<primary sysdba passwd>
```

6. Create Audit Directory

Create audit file destination directory on the standby database.

```
$ mkdir -p /u01/app/oracle/admin/sdb/adump
```

7. Startup Standby Instance

Startup the standby database instance on first standby host in the NOMOUNT state to prepare for instantiation.

```
$> export ORACLE_SID=sdb
$> sqlplus / as sysdba
SQL> startup nomount
```

8. Validate Network Setup

At this stage, Oracle Net should be able to resolve the TNS aliases for both the primary and standby environments from the standby environment.

```
$ tnsping pdb
```
$ tnsping sdb

$ sqlplus sys/<password>@slcac456:1521/pdb as sysdba
Instantiate Standby Database

This section outlines the instantiation of the standby database after the setup on the primary and standby environments is complete.

1. Duplicate Database

Using the Recovery Manager (RMAN), the standby database can be created with DUPLICATE DATABASE command. As part of the duplication process, the parameter file, password file, controlfile, and database files are copied over from the primary instance and setup in the standby environment.

The appropriate changes required to the parameter settings for standby operation will also need to be specified during the RMAN command. Once RMAN copies over the primary parameter file, the provided parameters are changed accordingly.

As the password file is also copied over, the standby database would have the same password as the primary database and not necessarily as that was created earlier.

```
$rman

connect target sys/welcome1@//slcac456:1521/pdb
connect auxiliary sys/welcome1@//slcac458:1521/sdb
run {
allocate channel p1 type disk;
allocate channel p2 type disk;
allocate channel p3 type disk;
allocate channel p4 type disk;
allocate auxiliary channel s1 type disk;
duplicate target database for standby from active database
  dorecover
  spfile
  parameter_value_convert='/pdb','/sdb'
  set db_unique_name = 'sdb'
  set cluster_database = 'false'
  set audit_file_dest = '/u01/app/oracle/admin/sdb/adump'
```
set db_create_file_dest = '+DATA'

set log_archive_dest_2 = 'service=pdb lgwr async register
valid_for=(online_logfiles, primary_role) db_unique_name=pdb'

set remote_listener = 'slcac458-scan:1521'

set fal_server='pdb'

nofilenamecheck;

2. Enable Flashback Database
Enable Flashback Database on the standby database and adjust retention as required.

 SQL> alter database flashback on;

 SQL> alter system set DB_FLASHBACK_RETENTION_TARGET=120;

 Start managed recovery mode

 SQL> alter database recover managed standby database using
 current logfile disconnect;

3. Move Standby SPFILE to ASM
Move standby spfile to Automatic Storage Management (ASM) on the standby database

 $ export ORACLE_SID=sdb

 RMAN> connect target /

 RMAN> backup spfile;

 RMAN> restore spfile to '+DATA/sdb/spfilesdb.ora';

4. Start Managed Recovery Mode
Start managed recovery mode as follows

 SQL> alter database recover managed standby database using
 current logfile disconnect;
Post Instantiation Steps
The following steps are performed after the standby instantiation has been completed.

1. **Register standby database with Oracle Clusterware.**
 Make sure that the ORACLE_HOME environment variable is set correctly. Register the standby database with Oracle Clusterware as single instance to run from one node of the cluster.

   ```
   $ srvctl add database -d sdb -o $ORACLE_HOME -p "+DATA/sdb/spfilesdb.ora" -r physical_standby -s mount -c SINGLE -x slcac458
   ```

2. **Convert the standby database to Oracle RAC**
 This step is optional. At this stage the standby database is configured as a single instance database. If the primary database was RAC database, the standby database can also be converted into RAC standby. [Appendix B](#) provides information on using the `rconfig` tool to convert the single instance database to RAC standby database.

3. **Setup Data Guard Broker Configuration**
 This step is optional. Creating a Data Guard Broker configuration enables easier management of the entire Data Guard environment as a single entity. It provides management, maintenance and monitoring capabilities that can be used both locally and remotely. [Appendix C](#) provides more information on setting up Data Guard Broker configuration.

4. **Setup Dedicated DR Network**
 This step is optional. The Redo Transport Services can be configured to use a dedicated network. A dedicated network channel can help in improving the performance of redo transmission especially when the application network traffic consumes most of available bandwidth on the public network. Please refer to MOS note 1451810.1, Configuring Dedicated Disaster Recovery Network on Oracle Database Appliance, for more information on setting up a dedicated network channel for Data Guard Redo Transport.

5. **Verify Configuration and Setup**
 On the standby database internal data dictionary views can be used to verify standby database operations.

   ```
   $ srvctl config database -d sdb
   SQL> select database_role, switchover_status from v$database;
   SQL> select thread#, sequence#, applied from v$archived_log order by sequence#;
   ```
Appendix B: Converting Single Instance Databases to Oracle RAC

You can use the `rconfig` command line utility to convert a single-instance database to an Oracle RAC database, or to convert it to an Oracle RAC One Node.

To use this feature, complete the following steps:

Create Configuration XML File

A sample of the configuration XML file to be saved as convert.xml is shown below. You may modify this file as required for your system.

The sample XML files are in `$ORACLE_HOME/assistants/rconfig/sampleXML` directory.

Note: Set the `Convert verify="ONLY"` initially to perform a test conversion to ensure that a conversion can be completed successfully.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<n:RConfig xmlns:n="http://www.oracle.com/rconfig"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.oracle.com/rconfig rconfig.xsd">
    <n:ConvertToRAC>
        <n:Convert verify="YES">
            <n:SourceDBHome>/u01/app/oracle/product/11.2.0.3/dbhome_1</n:SourceDBHome>
            <n:TargetDBHome>/u01/app/oracle/product/11.2.0.3/dbhome_1</n:TargetDBHome>
            <n:SourceDBInfo SID="sdb">
                <n:Credentials>
                    <n:User>sys</n:User>
                    <n:Password>welcome1</n:Password>
                    <n:Role>sysdba</n:Role>
                </n:Credentials>
            </n:SourceDBInfo>
            <n:NodeList>
                <n:Node name="slcac458"/>
                <n:Node name="slcac459"/>
            </n:NodeList>
            <n:InstancePrefix>sdb</n:InstancePrefix>
            <n:SharedStorage type="ASM">
                <n:TargetDatabaseArea></n:TargetDatabaseArea>
                <n:TargetFlashRecoveryArea></n:TargetFlashRecoveryArea>
            </n:SharedStorage>
            <n:Convert>
                <n:ConvertToRAC></n:ConvertToRAC>
            </n:Convert>
        </n:Convert>
    </n:ConvertToRAC>
</n:RConfig>
```
Run `rconfig` Tool

When you have completed making changes, save the file. Run the following command on the standby database. The `convert.xml` is the name of the XML input file you configured above.

```shell
$ rconfig convert.xml
```

Update Cluster Ready Services Resource

The Cluster Ready Services (CRS) resource must be updated for the converted database.

```shell
$ srvctl modify database -d stby -r physical_standby -s mount
```

Validate Configuration

Validate the configuration of standby database.

```shell
$ srvctl config database -d stby
```
Appendix C: Creating Data Guard Broker Configuration

This section outlines the process of Oracle Data Guard Broker configuration.

Configure listeners for static registration

Configure listeners for static registration of all the instances of primary & standby databases. In the Oracle Database Appliance, the listeners are running from the Grid Infrastructure home. An example of static registration for a RAC primary & standby configuration:

On node slcac456:

```
SID_LIST_LISTENER =

   (SID_LIST =
    (SID_DESC = (GLOBAL_DBNAME = pdb_DGMGRL)
     (ORACLE_HOME = /u01/app/oracle/product/11.2.0.3/dbhome_1)
     (SID_NAME = pdb1)))
```

On node slcac457:

```
SID_LIST_LISTENER =

   (SID_LIST =
    (SID_DESC = (GLOBAL_DBNAME = pdb_DGMGRL)
     (ORACLE_HOME = /u01/app/oracle/product/11.2.0.3/dbhome_1)
     (SID_NAME = pdb2)))
```

On node slcac458:

```
SID_LIST_LISTENER =

   (SID_LIST =
    (SID_DESC =
     (GLOBAL_DBNAME = sdb_DGMGRL)
     (ORACLE_HOME = /u01/app/oracle/product/11.2.0.3/dbhome_1)
     (SID_NAME = sdb1)))
```

On node slcac459:
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (GLOBAL_DBNAME = sdb_DGMGRL)
 (ORACLE_HOME = /u01/app/oracle/product/11.2.0.3/dbhome_1)
 (SID_NAME = sdb2)))

Configure Broker Configuration Files
Configure location of broker configuration files at both primary and standby databases.
On node slcac456:

 SQL> ALTER SYSTEM SET DG_BROKER_CONFIG_FILE1='+DATA' SCOPE=BOTH SID='*';
 SQL> ALTER SYSTEM SET DG_BROKER_CONFIG_FILE2='+RECO' SCOPE=BOTH SID='*';

On node slcac458:

 SQL> ALTER SYSTEM SET DG_BROKER_CONFIG_FILE1='+DATA' SCOPE=BOTH SID='*';
 SQL> ALTER SYSTEM SET DG_BROKER_CONFIG_FILE2='+RECO' SCOPE=BOTH SID='*';

Enable Data Guard Broker
Enable Data Guard Broker on both primary and standby databases.
On node slcac456:

 SQL> ALTER SYSTEM SET DG_BROKER_START='TRUE' SCOPE=BOTH SID='*';

On node slcac458:

 SQL> ALTER SYSTEM SET DG_BROKER_START='TRUE' SCOPE=BOTH SID='*';

Create Broker Configuration
Create the broker configuration on the primary using the DB_UNIQUE_NAME of the primary database and its corresponding TNS alias.

 DGMGRL> connect sys/welcome1;
 DGMGRL> CREATE CONFIGURATION 'ODADGConfig' AS
 > PRIMARY DATABASE IS 'PDB'
Add Standby Database to Data Guard Broker Configuration

Add standby database to the configuration using the DB_UNIQUE_NAME of the standby database.

```
DGMGRL> ADD DATABASE 'SDB' AS
```

Enable Configuration

Enable Data Guard Broker configuration as follows.

```
DGMGRL> enable configuration;
```

Check configuration

Run the following command to verify the established configuration.

```
DGMGRL> show configuration;
DGMGRL> show database verbose prim;
DGMGRL> show instance verbose prim1;
DGMGRL> show instance verbose prim2;
DGMGRL> show database verbose stby;
DGMGRL> show instance verbose stby1;
DGMGRL> show instance verbose stby2;
```
References

1. Oracle Database Appliance Website on OTN

2. Oracle Real Application Clusters Website on OTN

3. Oracle Clusterware Website on OTN

4. Oracle Data Guard Website on OTN

5. Oracle Maximum Availability Architecture

6. Oracle Data Guard Concepts and Administration 11g Release 2 (11.2)
 http://docs.oracle.com/cd/E11882_01/server.112/e25608/toc.htm

7. My Oracle Support (MOS) Note 1075908.1
 https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1075908.1

8. Oracle Database High Availability Website on OTN

9. Oracle® Database High Availability Best Practices 11g Release 2 (11.2)
 http://docs.oracle.com/cd/E11882_01/server.112/e10803.pdf